Spatial autoregressive models for statistical inference from ecological data

نویسندگان

  • JAY M. VER HOEF
  • ERIN E. PETERSON
  • MEVIN B. HOOTEN
  • EPHRAIM M. HANKS
چکیده

Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network-based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inference using CAR and SAR models, including: (1) model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR and SAR models, showing their development and connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregressive and SAR models depend on weight matrices, whose practical development uses neighborhood definition and row-standardization. Weight matrices can also include ecological covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in harbor seals (Phoca vitulina) in southeastern Alaska from 463 polygons, some with missing data, are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set is used for both prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary variances and correlations of a CAR model and demonstrate the effect of row-standardization. We include several take-home messages for CAR and SAR models, including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neighbors. We highlight several reasons why ecologists will want to make use of autoregressive models, both directly and in hierarchical models, and not only in explicit spatial settings, but also for more general connectivity models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Inference in Autoregressive Models with Non-negative Residuals

Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...

متن کامل

Spatial Stochastic Volatility for Lattice Data

Spatial heteroskedasticity may arise jointly with spatial autocorrelation in lattice data collected from agricultural trials and environmental studies. This leads to spatial clustering not only in the level but also in the variation of the data, the latter of which may be very important, for example, in constructing prediction intervals. This article introduces a spatial stochastic volatility (...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

Frontiers in Time Series and Financial Econometrics: An Overview

Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018